brmesh/components/fastcon/fastcon_controller.cpp
2025-02-07 21:37:53 -06:00

228 lines
8.3 KiB
C++

#include "esphome/core/component_iterator.h"
#include "esphome/core/log.h"
#include "fastcon_controller.h"
#include "protocol.h"
namespace esphome
{
namespace fastcon
{
static const char *const TAG = "fastcon.controller";
void FastconController::queueCommand(uint32_t light_id_, const std::vector<uint8_t> &data)
{
std::lock_guard<std::mutex> lock(queue_mutex_);
if (queue_.size() >= max_queue_size_)
{
ESP_LOGW(TAG, "Command queue full (size=%d), dropping command for light %d",
queue_.size(), light_id_);
return;
}
Command cmd;
cmd.data = data;
cmd.timestamp = millis();
cmd.retries = 0;
queue_.push(cmd);
ESP_LOGV(TAG, "Command queued, queue size: %d", queue_.size());
}
void FastconController::clear_queue()
{
std::lock_guard<std::mutex> lock(queue_mutex_);
std::queue<Command> empty;
std::swap(queue_, empty);
}
void FastconController::setup()
{
ESP_LOGCONFIG(TAG, "Setting up Fastcon BLE Controller...");
ESP_LOGCONFIG(TAG, " Advertisement interval: %d-%d", this->adv_interval_min_, this->adv_interval_max_);
ESP_LOGCONFIG(TAG, " Advertisement duration: %dms", this->adv_duration_);
ESP_LOGCONFIG(TAG, " Advertisement gap: %dms", this->adv_gap_);
}
void FastconController::loop()
{
const uint32_t now = millis();
switch (adv_state_)
{
case AdvertiseState::IDLE:
{
std::lock_guard<std::mutex> lock(queue_mutex_);
if (queue_.empty())
return;
Command cmd = queue_.front();
queue_.pop();
esp_ble_adv_params_t adv_params = {
.adv_int_min = adv_interval_min_,
.adv_int_max = adv_interval_max_,
.adv_type = ADV_TYPE_NONCONN_IND,
.own_addr_type = BLE_ADDR_TYPE_PUBLIC,
.peer_addr = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
.peer_addr_type = BLE_ADDR_TYPE_PUBLIC,
.channel_map = ADV_CHNL_ALL,
.adv_filter_policy = ADV_FILTER_ALLOW_SCAN_ANY_CON_ANY,
};
uint8_t adv_data_raw[31] = {0};
uint8_t adv_data_len = 0;
// Add flags
adv_data_raw[adv_data_len++] = 2;
adv_data_raw[adv_data_len++] = ESP_BLE_AD_TYPE_FLAG;
adv_data_raw[adv_data_len++] = ESP_BLE_ADV_FLAG_BREDR_NOT_SPT | ESP_BLE_ADV_FLAG_GEN_DISC;
// Add manufacturer data
adv_data_raw[adv_data_len++] = cmd.data.size() + 2;
adv_data_raw[adv_data_len++] = ESP_BLE_AD_MANUFACTURER_SPECIFIC_TYPE;
adv_data_raw[adv_data_len++] = MANUFACTURER_DATA_ID & 0xFF;
adv_data_raw[adv_data_len++] = (MANUFACTURER_DATA_ID >> 8) & 0xFF;
memcpy(&adv_data_raw[adv_data_len], cmd.data.data(), cmd.data.size());
adv_data_len += cmd.data.size();
esp_err_t err = esp_ble_gap_config_adv_data_raw(adv_data_raw, adv_data_len);
if (err != ESP_OK)
{
ESP_LOGW(TAG, "Error setting raw advertisement data (err=%d): %s", err, esp_err_to_name(err));
return;
}
err = esp_ble_gap_start_advertising(&adv_params);
if (err != ESP_OK)
{
ESP_LOGW(TAG, "Error starting advertisement (err=%d): %s", err, esp_err_to_name(err));
return;
}
adv_state_ = AdvertiseState::ADVERTISING;
state_start_time_ = now;
ESP_LOGV(TAG, "Started advertising");
break;
}
case AdvertiseState::ADVERTISING:
{
if (now - state_start_time_ >= adv_duration_)
{
esp_ble_gap_stop_advertising();
adv_state_ = AdvertiseState::GAP;
state_start_time_ = now;
ESP_LOGV(TAG, "Stopped advertising, entering gap period");
}
break;
}
case AdvertiseState::GAP:
{
if (now - state_start_time_ >= adv_gap_)
{
adv_state_ = AdvertiseState::IDLE;
ESP_LOGV(TAG, "Gap period complete");
}
break;
}
}
}
std::vector<uint8_t> FastconController::get_advertisement(uint32_t light_id_, bool is_on, float brightness, float red, float green, float blue)
{
std::vector<uint8_t> light_data;
// Convert brightness to 0-127 range
uint8_t bright = static_cast<uint8_t>(std::min(brightness * 127.0f, 127.0f));
if (!is_on)
{
// Off state
light_data = {static_cast<uint8_t>(0)}; // Just the off command
}
else if (red == 0 && green == 0 && blue == 0)
{
// Warm white mode
light_data = std::vector<uint8_t>{
static_cast<uint8_t>(128 + bright), // On bit (128) + brightness
0, 0, 0, // RGB values
127, 127 // Warm/cold values
};
}
else
{
// RGB mode
uint8_t r = static_cast<uint8_t>(red * 255.0f);
uint8_t g = static_cast<uint8_t>(green * 255.0f);
uint8_t b = static_cast<uint8_t>(blue * 255.0f);
light_data = std::vector<uint8_t>{
static_cast<uint8_t>(128 + bright), // On bit (128) + brightness
b, r, g, // RGB values (in BRG order per protocol)
0, 0 // No warm/cold values in RGB mode
};
}
return this->single_control(light_id_, light_data);
}
std::vector<uint8_t> FastconController::single_control(uint32_t light_id_, const std::vector<uint8_t> &data)
{
std::vector<uint8_t> result_data(12);
result_data[0] = 2 | (((0xfffffff & (data.size() + 1)) << 4));
result_data[1] = light_id_;
std::copy(data.begin(), data.end(), result_data.begin() + 2);
return this->generate_command(5, light_id_, result_data, true);
}
std::vector<uint8_t> FastconController::generate_command(uint8_t n, uint32_t light_id_, const std::vector<uint8_t> &data, bool forward)
{
static uint8_t sequence = 0;
// Create command body with header
std::vector<uint8_t> body(data.size() + 4);
uint8_t i2 = (light_id_ / 256);
// Construct header
body[0] = (i2 & 0b1111) | ((n & 0b111) << 4) | (forward ? 0x80 : 0);
body[1] = sequence++; // Use and increment sequence number
if (sequence >= 255)
sequence = 1;
body[2] = this->mesh_key_[3]; // Safe key
// Copy data
std::copy(data.begin(), data.end(), body.begin() + 4);
// Calculate checksum
uint8_t checksum = 0;
for (size_t i = 0; i < body.size(); i++)
{
if (i != 3)
{
checksum = checksum + body[i];
}
}
body[3] = checksum;
// Encrypt header and data
for (size_t i = 0; i < 4; i++)
{
body[i] = DEFAULT_ENCRYPT_KEY[i & 3] ^ body[i];
}
for (size_t i = 0; i < data.size(); i++)
{
body[4 + i] = this->mesh_key_[i & 3] ^ body[4 + i];
}
// Prepare the final payload with RF protocol formatting
std::vector<uint8_t> addr = {DEFAULT_BLE_FASTCON_ADDRESS.begin(), DEFAULT_BLE_FASTCON_ADDRESS.end()};
return prepare_payload(addr, body);
}
} // namespace fastcon
} // namespace esphome